oxygen  Thermodynamic & Transport Properties (Based on Venus model)
CAS number
Name  
Category
Pure/Mixture
Short Name
Full Name
Chemical Formula
Synonym R-732 ,Dioxygen;Molecular oxygen; Oxygen molecule
Molecular Weight
Triple Point Temperature Triple 
    Point Temperature
Normal Boiling Point Normal boiling point
Critical Temperature Critical Temperature
Critical Pressure>Critical Pressuresure
Critical Density
Acentric FactorAcentric Factor
Dipole MomentDipole Moment
oxygen : Introduction

Oxygen is more soluble in water than nitrogen is. Water in equilibrium with air contains approximately 1 molecule of dissolved O2 for every 2 molecules of N2, compared to an atmospheric ratio of approximately 1:4. The solubility of oxygen in water is temperature-dependent, and about twice as much (14.6 mg·L−1) dissolves at 0 °C than at 20 °C (7.6 mg·L−1). At 25 °C and 1 standard atmosphere (101.3 kPa) of air, freshwater contains about 6.04 milliliters (mL) of oxygen per liter, whereas seawater contains about 4.95 mL per liter. At 5 °C the solubility increases to 9.0 mL (50% more than at 25 °C) per liter for water and 7.2 mL (45% more) per liter for sea water.

Oxygen condenses at 90.20 K (−182.95 °C, −297.31 °F), and freezes at 54.36 K (−218.79 °C, −361.82 °F).[Both liquid and solid O2 are clear substances with a light sky-blue color caused by absorption in the red (in contrast with the blue color of the sky, which is due to Rayleigh scattering of blue light). High-purity liquid O2 is usually obtained by the fractional distillation of liquefied air.Liquid oxygen may also be produced by condensation out of air, using liquid nitrogen as a coolant. It is a highly reactive substance and must be segregated from combustible materials.

The spectroscopy of molecular oxygen is associated with the atmospheric processes of aurora, airglow and nightglow. The absorption in the Herzberg continuum and Schumann–Runge bands in the ultraviolet produces atomic oxygen that is important in the chemistry of the middle atmosphere. Excited state singlet molecular oxygen is responsible for red chemiluminescence in solution.

Temperature=
Acceptable Range : < T <
Pressure=
< P <
Density=
Specific Enthalpy=
Specific Entropy=
Internal Energy=
Reference
Please Login before calculating  LoginorRegister
oxygen:Thermodynamic & Transport Properties Calculated Result
State:
Molecular Weight=
Celsius,Fahrenheit,Reaumur & Thermodynamic Temperature ConversionTemperature=
absolute pressure & gauge pressurePressure=
Density=
Specific VolumeSpecific Volume=
Specific 
     EnthalpySpecific Enthalpy=
Specific EntropySpecific Entropy=
Internal EnergyInternal Energy=
Composition=



Saturated Vapor Pressure, Boiling Point(dew point), Latent Heat of Vaporization are saturated properties, just enter One parameter to calculate them!
Saturated Vapor Pressure=
Boiling Point (Dew Point)=
latent heat of vaporizationVaporization Latent Heat=
Constant Pressure Specific HeatSpecific Heat(Cp)=
Specific Heat(Cv)=
Adiabatic Exponent Cp/Cv=
QualityVapor Quality=
 Compressibility Factor Compressibility Factor=
Helmholtz Energy Helmholtz Energy=
 Gibbs Free Energy Gibbs Free Energy=
FugacityFugacity=
Fugacity Coefficient Fugacity Coefficient=
Joule-Thomson Coefficient Joule-Thomson Coefficient =
Speed of SoundSpeed of Sound=
Virial Coefficient2nd Virial Coefficient =
3rd Virial Coefficient=
Thermal Conductivity Thermal Conductivity=
 thermal diffusivity Thermal Diffusivity=
Kinematic ViscosityKinematic Viscosity =
Dynamic ViscosityDynamic Viscosity =
Surface TensionSurface Tension =
Prandtl Number Prandtl Number=
Relative Dielectric ConstantRelative Dielectric Constant =

Comment
Post your comment after login/register. LoginorRegister

View source
×